

Practical instructions for solving MWR forward and inverse problems

Practical instructions for solving MWR forward and inverse problems

DomeNico Cimini

Institute for the Environmental Analysis and Monitoring (IMAA) National Research Council of ITALY (CNR)

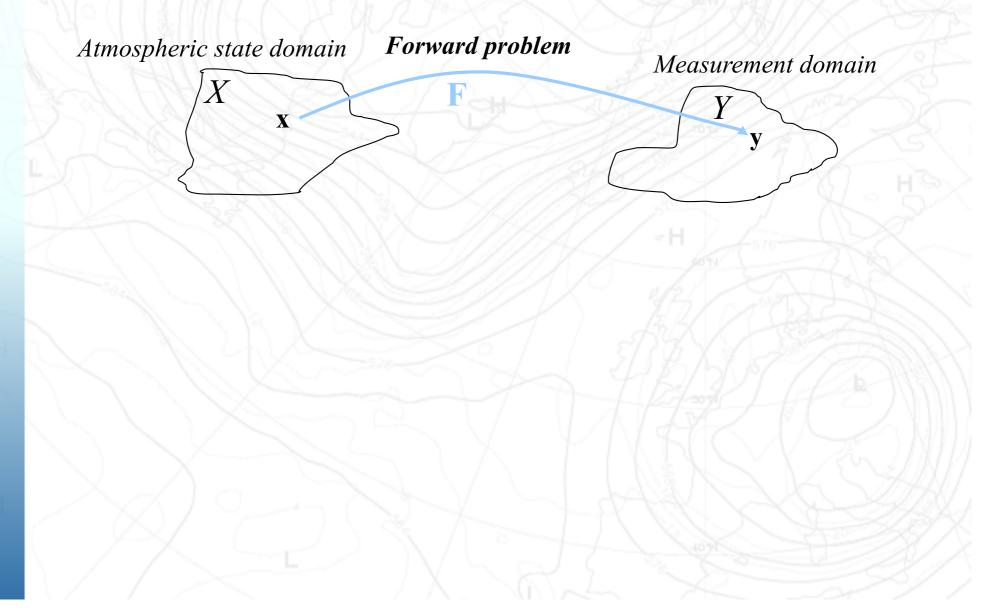
Contributions from: Francesco De Angelis, Pauline Martinet, Ulrich Löhnert, and the TOPROF WG3 TOPROF Training School – Dublin 3/9/2017 Practical instructions for

Practical instructions for solving MWR forward and inverse problems

Practical instructions for MWR forward and inverse problems

Introduction

etodologie per


- o Forward and inverse problems
- Software tools
 RTTOV-gb
 1DVAR
 Net1D
- Summary and practical information

Stituto di netodologie per indicidante and the struction of the structio

Practical instructions for solving MWR forward and inverse problems

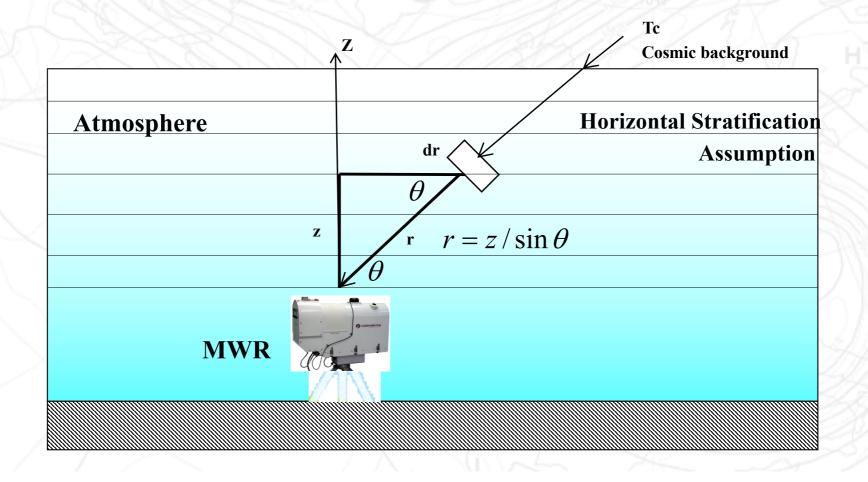
Introduction Forward and inverse problems

 $\hfill\square$ Going from to "atmospheric state \rightarrow Tb" is called Forward Problem

 T_b

netodologie per analisi ambientale Practical instructions for solving MWR forward and inverse problems

Introduction Forward and inverse problems


$$= T_c \cdot e^{-\tau(0,\infty)}$$

Measured quantity

Cosmic background term (attenuated along the path)

$$\int_{-\infty}^{\infty} K_E(r) \cdot T(r) \cdot e^{-0} \cdot dr$$

⁰ Atmospheric term (emitted & attenuated along the path)

+

Practical instructions for solving MWR forward and inverse problems

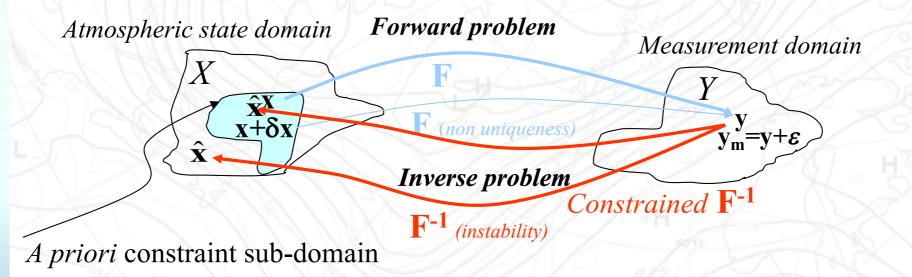
 Introduction Forward and inverse problems

 • Going from to "atmospheric state → Tb" is called Forward Problem

 Atmospheric state domain

 F

 Y


x+δx

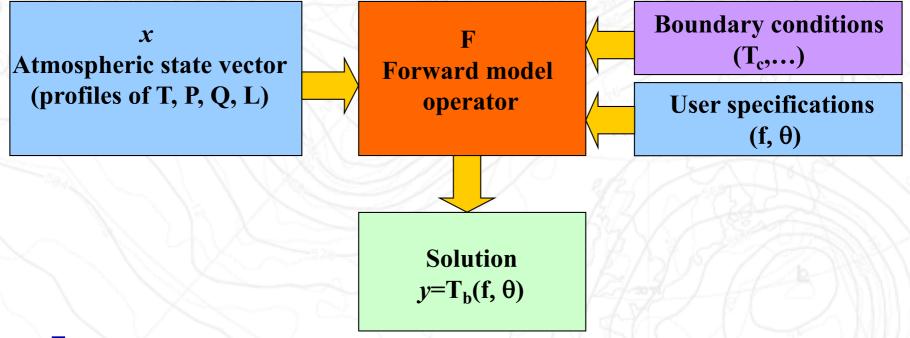
 ${f F}$ (non uniqueness)

 TOPROF Training School – Dublin 3/9/2017
 Practical instructions for solving MWR forward and inverse problems

 Introduction
 Forward and inverse problems

 □
 Going from to "atmospheric state → Tb" is called Forward Problem

o III-posed problem


o solution in not unique/stable

• Need for a priori knowledge to constrain the solution

Practical instructions for solving MWR forward and inverse problems

Introduction Forward and inverse problems

- □ The Forward Problem can be modeled in a straightforward manner
- □ Forward model (FM) operator scheme

Errors

- Discretization errors
- Absorption model uncertainties
- Other assumptions (scattering, plane parallel,...)

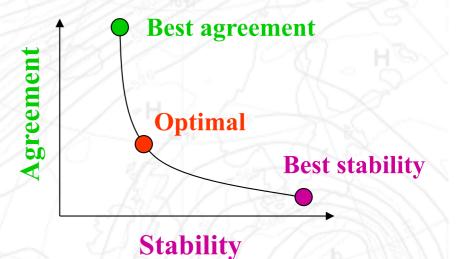
Practical instructions for solving MWR forward and inverse problems

Introduction **Forward and inverse problems**

- The Inverse Problem may be very tricky
 - Tb are processed to estimate atmospheric variables 0
- Examples of inverse methods:
 - Multivariate regression
 - o Neural-network methods
 - o Optimal estimation method

Provided by proprietary software of commercial MWR

More research-oriented



Practical instructions for solving MWR forward and inverse problems

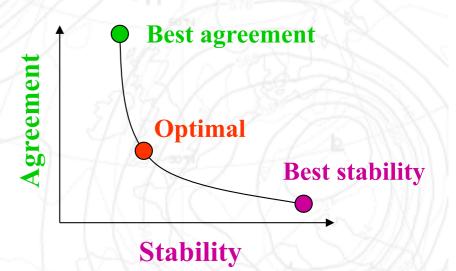
Introduction Forward and inverse problems

Optimal Estimation Method

 Method to optimally couple observations with a priori background knowledge (considering the uncertainty of both)

• Moderately non-linear problem

Unbiased and Gaussian-distributed errors


Practical instructions for solving MWR forward and inverse problems

Introduction Forward and inverse problems

Minimization of a cost function J

$$J = [y - F(x)]^{T} R^{-1} [y - F(x)] + [x - x_{b}]^{T} B^{-1} [x - x_{b}]$$

Agreement (wrt the Obs) Stability (wrt the Bkg)

• Where:

etodologie per

o forward model F(x)

o error covariance matrices of Bkg (B) and Obs (R)

TOPROF Training School – Dublin 3/9/2017 Practical instructions for solving MWR forward and inverse problems Introduction **Forward and inverse problems** Solution increment **Iterative solution** $\mathbf{x}_{i+1} = \mathbf{x}_{i} + \left(B^{-1} + K_{i}^{T}R^{-1}K_{i}\right)^{-1} \left|K_{i}^{T}R^{-1}(\mathbf{y} - F(\mathbf{x}_{i})) - B^{-1}(\mathbf{x}_{i} - \mathbf{x}_{b})\right|$ Updated solution This pulls the solution towards obs; how Solution at strongly depends on R⁻¹ previous This pulls the solution iteration towards bkg; how K^{T} transforms from y to x space strongly depends on B⁻¹ y: Observation vector (T_B) F: Forward Model (e.g. RTTOV-gb) The solution increment is weighted with the K: Jacobian $(\partial F/\partial x)$ sum of obs and bkg uncertainty x_{b} : a priori profile $\mathbf{A}_{i+1} = (\mathbf{B}^{-1} + \mathbf{K}_i^T \mathbf{R}^{-1} \mathbf{K}_i)^{-1}$ **R:** Obs error covariance matrix If B and R are estimated correctly, the **B: Bkg error covariance matrix** diagonal of A gives the expected random A: Solution error covariance matrix

error at each height

Practical instructions for solving MWR forward and inverse problems

Practical instructions for MWR forward and inverse problems

Introduction

etodologie per

TOPROF Training School – Dublin 3/9/2017

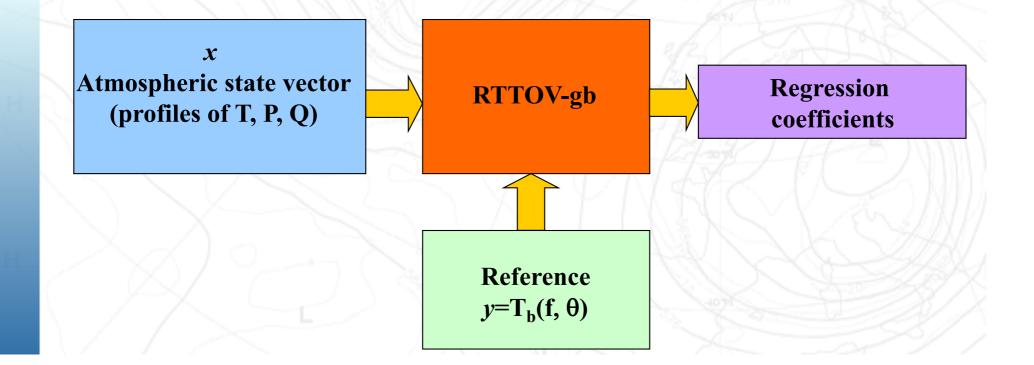
- o Forward and inverse problems
- Software tools
 RTTOV-gb
 1DVAR
 Net1D
- Summary and practical information

Practical instructions for solving MWR forward and inverse problems

TOPROF Training School – Dublin 3/9/2017 Software tools RTTOV-gb

Forward model (FM)

- There are several forward model available for ground-based MWR (ARTS, MonoRTM, PAMTRA,...)
- But none was specifically designed for NWP Data Assimilation
 Fast parameterized radiative transfer
- RTTOV is a fast forward model developed at EUMETSAT NWP SAF
 - o Widely used in the NWP community for DA of satellite observations
 - o But limited to satellite observing geometry
- RTTOV was modified within TOPROF to work for ground-based observations, hence RTTOV-gb
 - RTTOV-gb computes the forward + Jacobians (K) wrt to x
- RTTOV-gb currently only works for MW observations

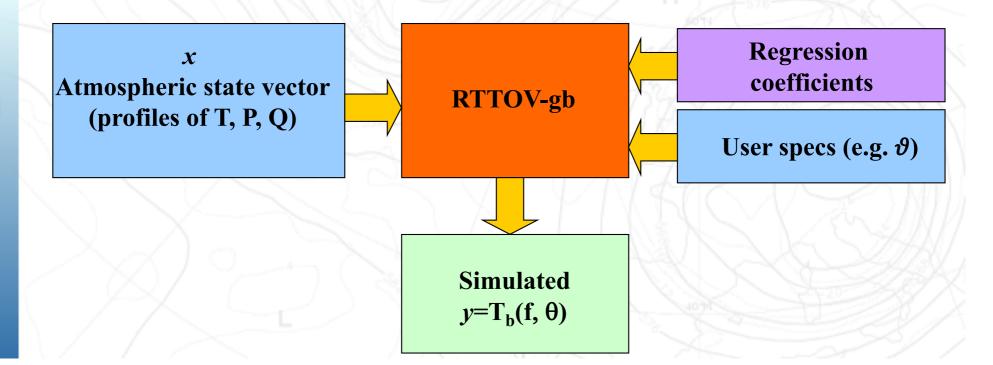

Practical instructions for solving MWR forward and inverse problems

Software tools RTTOV-gb

How RTTOV-gb works? (similarly to the parent RTTOV)

TRAINING:

- o Input:
 - o Climatological P,T, H profiles on N vertical levels;
 - o Atmospheric transmittance calculated with a reference FM
- Output: Regression coefficients

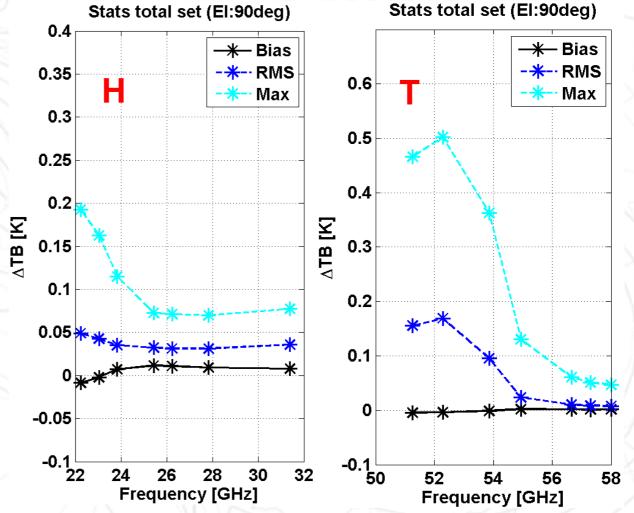

Practical instructions for solving MWR forward and inverse problems

Software tools RTTOV-gb

How RTTOV-gb works? (similarly to the parent RTTOV)

• FORWARD COMPUTING:

- o Input:
 - o P,T, H profiles on N vertical levels;
 - o Regression coefficients;
 - o User's specs (elevation angle, instrument)
- Output: Simulated Tb


etodologie per

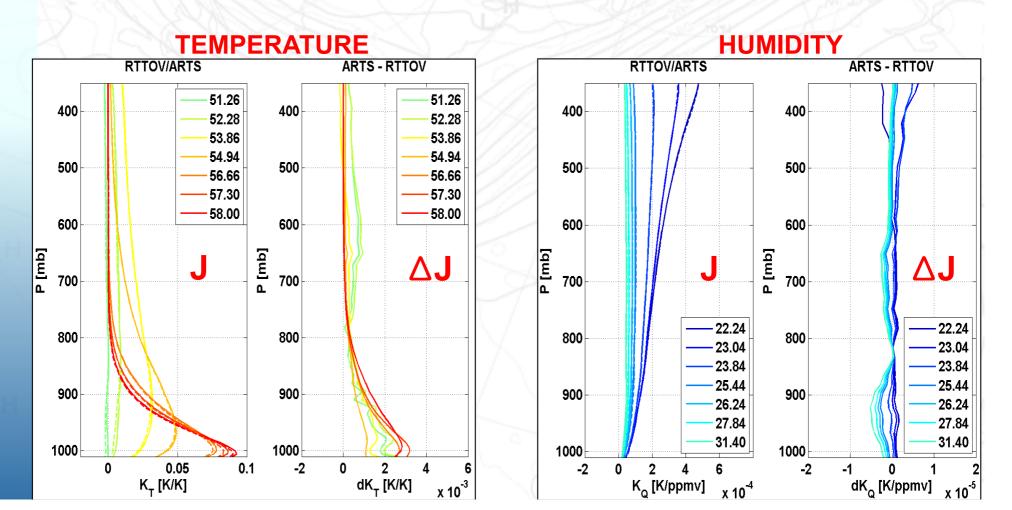
Practical instructions for solving MWR forward and inverse problems

Software tools RTTOV-gb

Statistical evaluation against reference model

Specs: Training: LBL Rosenkranz 1998 (R98) model independent profiles HATPRO Channels 90° elev. angle 0.4 0.35

netodologie per analisi ambientale Practical instructions for solving MWR forward and inverse problems


Software tools RTTOV-gb

RTTOV and RTTOV-gb also copmpute the Jacobian K= ∂ F/ ∂ x

Jacobian Evaluation (wih respect to reference model ARTS)

T Jacobian differences < 3%

Q Jacobian differences < 5%

Practical instructions for solving MWR forward and inverse problems

di Jogie per l'ambientale Software tools RTTOV-gb

RTTOV-gb testing

- Comparison wrt reference model*
 - $\circ~T_B$ differences less than typical MWR uncertainties
 - o Jacobians nearly identical to reference model
 - RTTOV-gb faster than reference model
- RTTOV-gb well suited for serving as FM for the direct DA of MWR Tb observations.
- RTTOV-gb is now in experimental use at some European institutions:
 - University: Geophysics and Meteorology Inst. (Univ. Koln)
 - National Weather Services: Meteo France, DWD

* De Angelis et al., RTTOV-gb, Geosci. Model Develop., 2016

Practical instructions for solving MWR forward and inverse problems

Software tools RTTOV-gb

What do we need for network NWP Data Assimilation?

- □ Test the consistency NWP-FM-Obs \rightarrow O-B analysis
- O-B: Observations minus Background
 - o Observations are from the instruments
 - Background is from the NWP model
- O-B analysis is needed for
 - o checking the consistency of the Obs with the Bkg
 - o estimating the potential innovation in the Obs

Practical instructions for solving MWR forward and inverse problems

Software tools RTTOV-gb

MWR O-B analysis with RTTOV-gb

- □ **Period:** 1 year Jan-Dec 2014
- □ **Format:** NetCDF, CF-compliant, after HD(CP)2
- Observations: 6 MWR (JOYCE, LACROS, CESAR, SIRTA, PAYERNE, RAO)
- Background NWP model:
 AROME NWP system (3h-forecasts + Analyses)
- Background Tb:
 - Computed with RTTOV-gb from closest AROME profiles

stodologie per

Practical instructions for solving MWR forward and inverse problems

m

3500

3000

2500

2000

1500

1000

500

0

Software tools RTTOV-gb

MWR O-B analysis with **RTTOV-gb**

6 stations HATPRO: 14 chans, 7 angles (NL)• CESAR **HATPRO** MP3000A: 12 chans, 2 angles (DE) o JOYCE **HATPRO** o LACROS (DE) **HATPRO** (CH)o Payerne **HATPRO** \circ RAO (DE) **MP3000A** RAO **HATPRO** (FR) o SIRTA 50°N 1-year data set (2014) Payerne 45°N 40°N 5

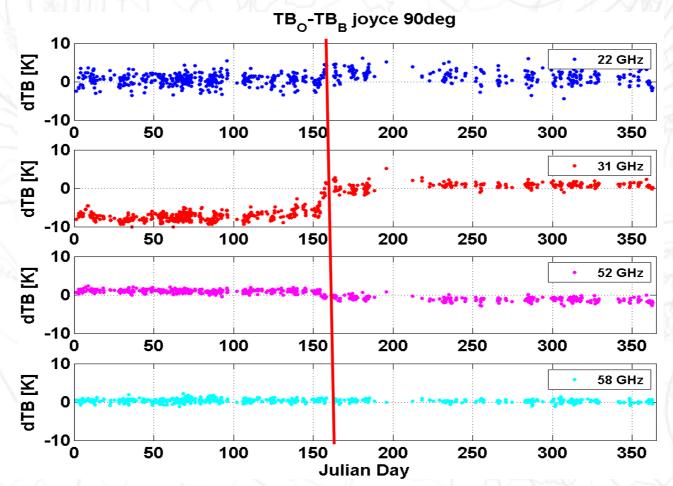
5°W

0°

10°W

5°E

10°E

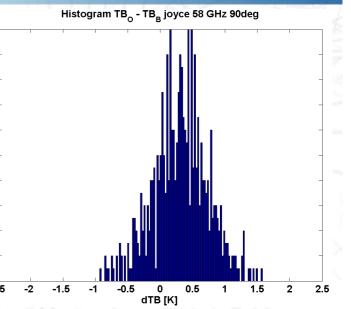

15°E

* De Angelis et al., Atm. Meas. Tech. Discuss., 2017

netodologie per 'analisi ambientale Practical instructions for solving MWR forward and inverse problems

Software tools RTTOV-gb

MWR O-B analysis: <u>bias</u> monitoring


* De Angelis et al., Atm. Meas. Tech. Discuss., 2017

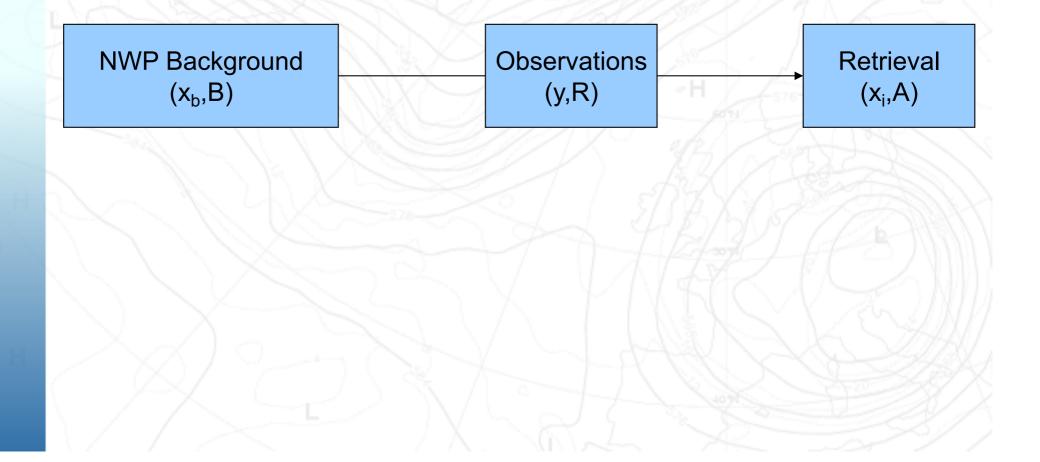
Centralized remote monitoring

etodologie per analisi ambientale Practical instructions for solving MWR forward and inverse problems

Software tools RTTOV-gb

95.8% excess kurtosis < 1 99.4% skewness < 0.5

Approximately Gaussian throughout the network


Obs and FM are consistent with NWP and can then be assimilated

* De Angelis et al., Atm. Meas. Tech. Discuss., 2017

Istituto di Inclisi ambientale Software tools 1DVAR

Practical instructions for solving MWR forward and inverse problems

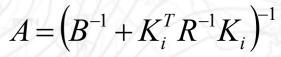
- Another step towards MWR data assimilation is the development of a one-dimensional variational retrieval (1DVAR)
- 1DVAR is a nonlinear retrieval technique based on Optimal Estimation Method with the a priori information taken from a NWP model output

Practical instructions for solving MWR forward and inverse problems

TOPROF Training School – Dublin 3/9/2017 Software tools 1DVAR

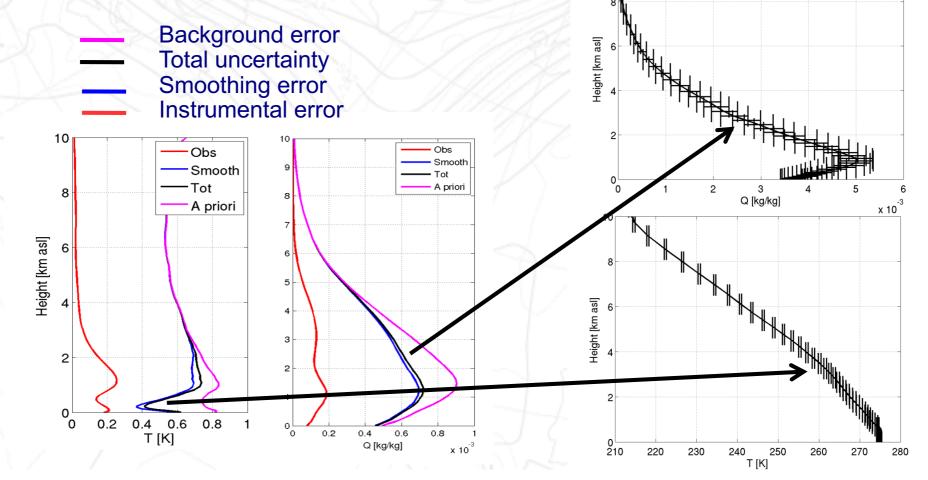
1DVAR development

- □ Start from the EUMETSAT NWP SAF 1DVAR package
 - Stand-alone system calling RTTOV (satellite applications)
- Modify to work with RTTOV-gb
 - NWPSAF 1DVAR v1.1 interfaced with RTTOV-gb v11.2
 - Modified the "composite instrument" option from "multiple instrument" to "same instrument with multiple elevation angles"
 - Added option to minimize humidity either in logarithm or in specific humidity
 - Extended quality check during the minimization (to avoid negative humidity and liquid water content values)
 - More flexibility in the LWP retrieval (background error defined by the user, minimization starting from the background value or a default value)


etodologie per

Practical instructions for solving MWR forward and inverse problems

Software tools 1DVAR


Error covariance

1DVAR results

T and Q profiles with estimated retrieval uncertainty

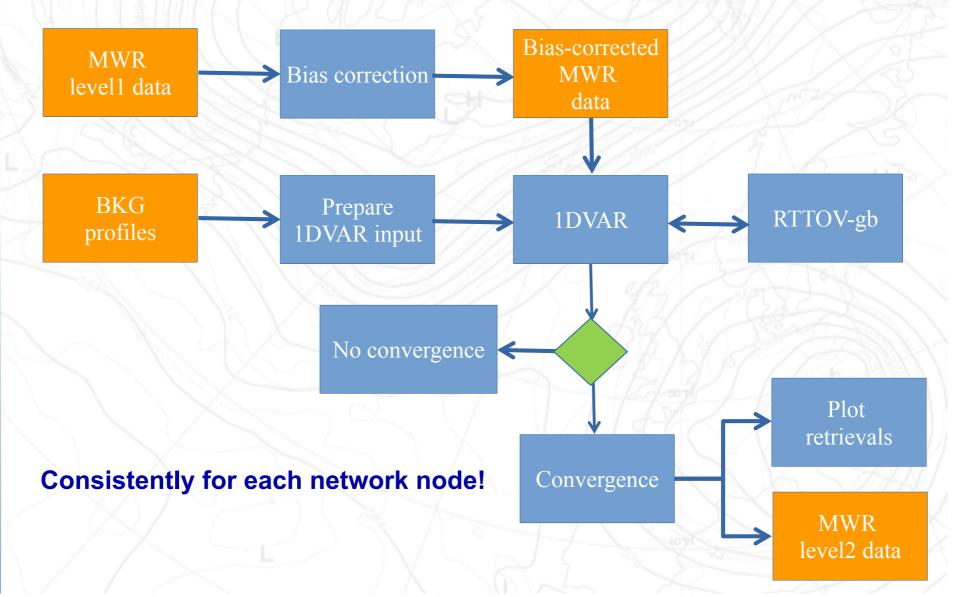
 Estimated uncertainties depends on the atmospheric situation (through Jacobians)

Stituto di Istituto di Istituto di Antonio School – Dublin 3/9/2017

Practical instructions for solving MWR forward and inverse problems

Software tools Net1D

How can we test this for a MWR network?


- Consider a prototype-network
- Develop a flexible processing chain to perform 1DVAR retrievals on different sites with different instrument and configurations
- Evaluate retrieval accuracy and dominant sources of errors (uncertainty / systematic / drifts)

Istituto di metodologie per l'anolisi ambientale

Practical instructions for solving MWR forward and inverse problems

Software tools Net1D

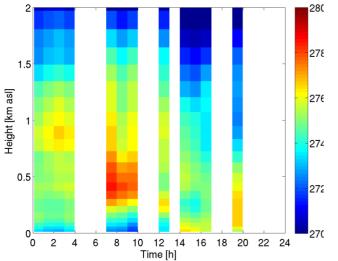
Net1D processing chain

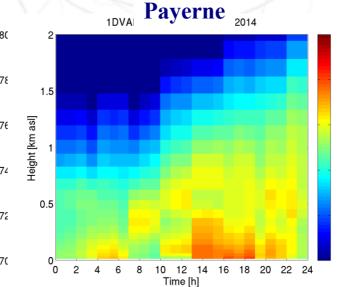
Stituto di Istituto di Istituto di Practical instructions for solving MWR forward and inverse problems

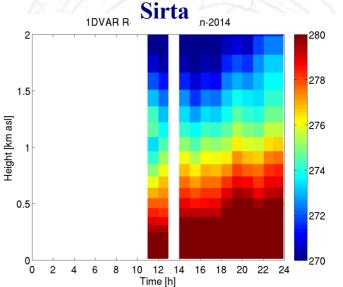
Software tools Net1D

- □ The whole configuration is defined in one config file:
 - o input data and paths
 - o station (location, instrument)
 - o period to process
 - o sampling strategy
 - o channels and elevation angles to be used
 - o control variables
 - R and B matrix
 - o cloud configuration
 - o etc..

First evaluation of Net1D chain on one day and six stations

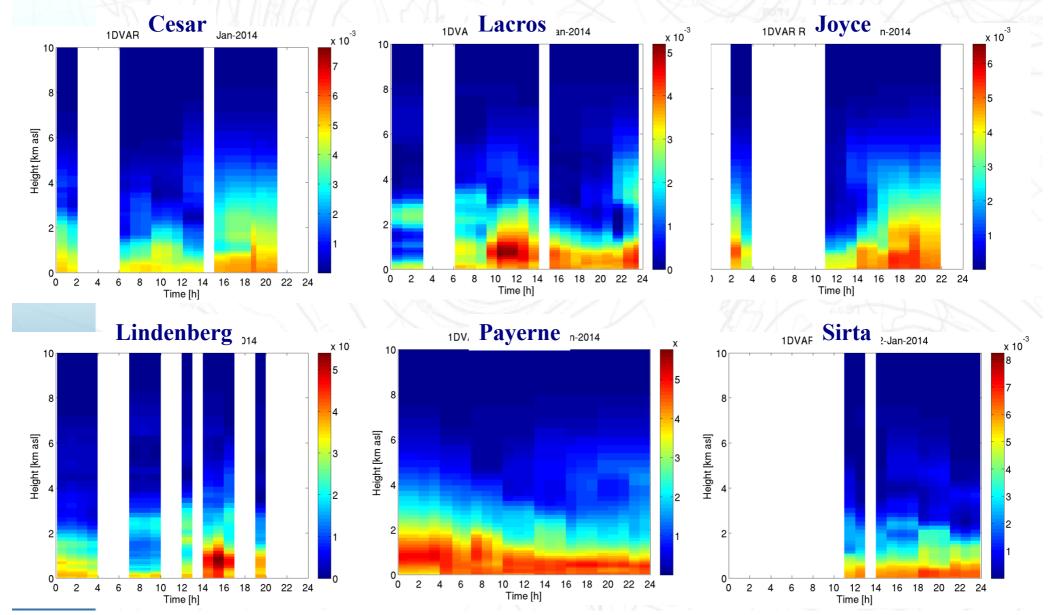

stituto di metodologie per l'analisi ambientale Practical instructions for solving MWR forward and inverse problems


Software tools Net1D


1DVAF Cesar 1DVAR F Lacros 2014 1DVAR | Joyce in-2014 Jan-2014 280 278 278 1.5 1.5 1.5 Height [km asl] Height [km asl] Height [km asl] 276 276 274 274 0.5 0.5 0.5 272 272 0 270 0 10 12 14 16 18 20 22 2 6 8 24 2 8 10 12 14 16 18 20 22 24 4 4 6 ŏ 2 4 6 8 10 12 14 16 18 20 22 24 Time [h] Time [h] Time [h]

Temperature profile retrievals

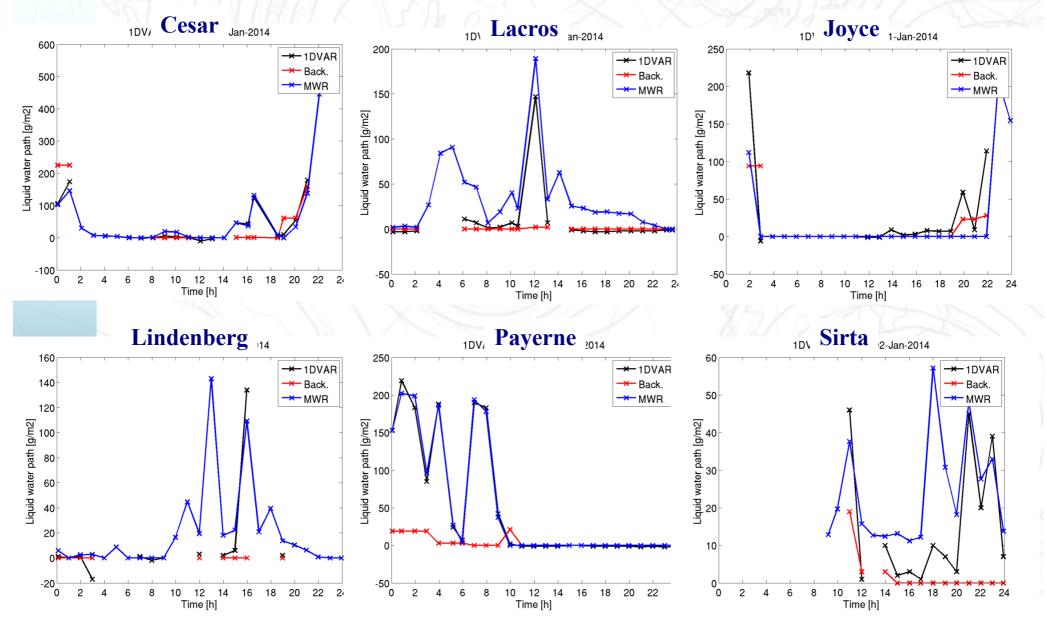
Lindenberg 14


280

270

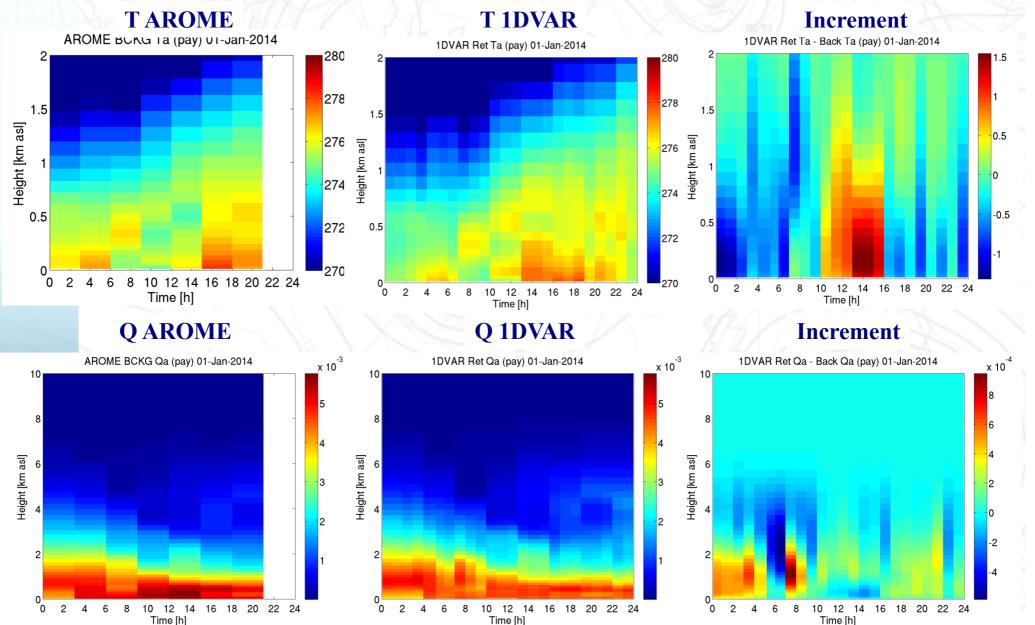
istituto di metodologie per l'analisi ambientale Practical instructions for solving MWR forward and inverse problems

Software tools Net1D


Humidity profile retrievals

istituto di metodologie per l'analisi ambientale Practical instructions for solving MWR forward and inverse problems

Software tools Net1D


Liquid water path retrievals

stituto di netodologie per 'analisi ambientale Practical instructions for solving MWR forward and inverse problems

Software tools Net1D

Impact on the background

Istituto di Istituto di Innolisi ambientale Software tools

Practical instructions for solving MWR forward and inverse problems

Net1D

- Next steps:
 - o perform one year of retrievals
 - o validation against radiosondes where available

TOPROF Training School – Dublin 3/9/2017 Practical instructions for solving MWR forward and inverse problems

Practical instructions for MWR forward and inverse problems

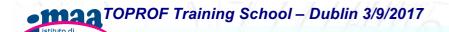
- Introduction
 - o Forward and inverse problems
- Software tools
 RTTOV-gb
 1DVAR
 Net1D

Summary and Practical information

Summary and practical information

Software tools:

o RTTOV-gb


- o fast FM for ground-based MWR
- o Ingests atmospheric profiles
- o Computes Tb and Jacobians

o **1DVAR**

- o fast inversion scheme
- o Ingests ground-based MWR obs
- o Computes retrievals of T and H profiles and LWP

o Net1D

- o network 1DVAR retrievals
- o Ingests ground-based MWR obs from a network (curr. 6 nodes)
- o Computes 1DVAR retrievals consistent throughout the network

Summary and practical information

Availability:

o RTTOV-gb

- o will be available through NWP SAF
- o needs a free RTTOV licence

o **1DVAR**

o available through P. Martinet (Météo France)

o needs RTTOV-gb

o Net1D

- o currently available on GitHub (Matlab code)
- o plans for translating to python
- o needs RTTOV-gb and 1DVAR

Thanks much for your attention!

